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In the first part of this paper, we discuss electrodynamics of an excitonic condensate in a bilayer. We show
that under certain conditions, the system has a dominant energy scale and is described by the effective
electrodynamics with “planar magnetic charges.” In the second part of the paper, we point out that a vortex
liquid state in bilayer superconductors also possesses dipolar superfluid modes and establish equivalence
mapping between this state and a dipolar excitonic condensate. We point out that a vortex liquid state in a
N-layer superconductor possesses multiple topologically coupled dipolar superfluid modes and therefore rep-
resents a generalization of the dipolar superfluidity concept.
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I. INTRODUCTION

The progress in semiconductor technology has made it
feasible to produce bilayers where the interparticle distance
is larger than the separation of the layers and which are ex-
pected to have interlayer excitonic states1–5 �as shown in Fig.
1� with a significant lifetime. Exciton is a boson and can
undergo Bose-Einstein condensation.6 Some signatures of
Bose-Einstein condensate of interlayer excitons were
reported.7 A renewed theoretical interest in these systems1–5

is focused on identification of possible unique properties of
such condensates which can set them apart from other fami-
lies of quantum fluids. In Ref. 4, it was discussed in great
detail that the spatial separation of the positive and negative
charges, in an exciton in a bilayer, makes the phase � of the
condensate transform as ��→��−eA�r+�+eA−�r−�. The di-
polar excitonic condensate �DEC� therefore features a cou-
pling to a difference of vector potential values at positions in
different layers r+ and r−.1,2,4 In the case of a small layer
separation d, one finds A�r+�−A−�r−��d�zA�r�. Therefore,
a static in-plane magnetic field Hext produces excitonic cur-
rents and the system is described by the following free en-
ergy density:1,2,4

F =
�

2
��� + ed�R̂Hext��2, �1�

where the operator R̂ rotates a vector 90° counterclockwise,

R̂�a ,b ,c�= �−b ,a ,c�, � is the phase stiffness, e is the electric
charge, and d is the separation of the layers. A particularly
interesting aspect of this observation is that although an ex-
citon is, by definition, an electrically neutral object, it has the
dipolar coupling to a gauge field and its effective low-energy
model has a symmetry different from the so-called “global”
U�1� symmetry which one finds in ordinary neutral superflu-
ids. It is also different from the “gauged” U�1� symmetry
which one finds in superconductors.

II. EFFECTIVE MODEL AND VORTICES IN DIPOLAR
CONDENSATE

To describe topological defects, we should include dy-
namics of the gauge field in model �1�. Consider a system of
two thin parallel layers with positive and negative charges
bound in pairs �as shown in Fig. 1�. The magnetic field obeys
the Maxwell equations outside the layers. Here,

� � B = J = e���z−� − ��z+��

�� i

2
�� � �* − �* � �� − e���2�A�r+� − A�r−��� ,

�2�

where J is the electric current, � is the DEC order parameter,
z�+,−� are the z axis positions of the upper and lower planes,
and r�+,−�= �x ,y ,z�+,−��. Topological defects in this system
correspond to the situation when the phase � of the order
parameter � changes by 2�n. A configuration of accompa-
nying magnetic field should be determined by minimization
of the energy taking into account �i� the kinetic energy of
currents in two planes, �ii� the potential energy of the corre-
sponding Ginzburg-Landau functional, and �iii� the energy of
the three-dimensional magnetic field configuration. This
problem is nonlocal and the field-inducing current itself de-
pends on the gauge field, i.e., should be determined in a
self-consistent way. However, we show here that there is a
regime when the system is accurately described by an un-
usual, on the other hand, tractable effective model. That is,
let us consider the situation where the separation of the lay-
ers d is small compared to the system size and A�r+�

FIG. 1. �Color online� A schematic picture of DEC. An exciton
forms as a result of the pairing of an electron in an electron-rich
layer and a hole in a hole-rich layer.
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−A−�r−��d�zA�r�. Then, in the hydrodynamic limit, the ef-
fective model is

Fef f =
1

2
��z����� + ed�R̂Bin�r���2 +

1

2
B2�r� , �3�

where Bin is the field in the dipolar layer. Consider a vortex
with ��=2�. Then, ��= 1

r e� which produces a logarithmic
divergence of the energy in a neutral system. However, Eq.
�3� suggests that for a given phase winding, the system can
minimize its energy by generating a certain configuration of
Bin. Note that the second term in Eq. �3� depends quadrati-
cally on B and does not allow a configuration of Bin which
would completely compensate the phase gradient in the first
term. This is in contrast to a vortex in a superconducting film
where the gauge field compensates the phase gradient at a
certain distance making the vortex a finite-energy object. A
configuration of the interplane field Bin, which would par-
tially compensate the divergence caused by ��, should sat-
isfy the condition,

ed�R̂Bin� �
1

r
e� �r � rcore� . �4�

This implies the following self-induced interplane field:

Bin = 	
1

ed

r

r2 �	 
 0,r = �x,y,0�� . �5�

At a first glance, Eq. �5� appears to violate the condition that
the magnetic field should be divergenceless. This problem is
resolved by including in the picture the “out-of-plane” mag-
netic fields. These, as schematically shown in Fig. 2, can
restore the � ·B=0 constraint in three-dimensional physical
space while permitting the in-plane field to have the form
required by Eq. �5� with a natural cutoff close to the vortex
core. From the � ·B=0 condition, it follows that both the
interlayer Bin field and the out-of-plane field carry the same
flux. However, for a given magnetic flux, the out-of-plane
field has the freedom to spread in the positive and negative z
axis directions. Since the magnetic flux is 	B ·dS, while the
magnetic field energy is �1 /2�	rB

2, the out-of-plane field
will have a finite value of the integral �1 /2�	r,z��z−. . .z+�B

2

over the entire three-dimensional space excluding the bilayer

space. On the other hand, the magnetic field inside the bi-
layer behaves as �Bin��1 /r and thus has logarithmically di-
vergent energy �1 /2�	r,z��z−. . .z+�B

2. Therefore, from the con-
dition � ·B=0 and geometry of the problem, it follows that
the energy of out-of-plane magnetic fields is negligible com-
pared to the energy of magnetic field in the dipolar bilayer
for a sample with d much smaller than the system size.

Thus, we have identified the regime where the dynamics
of the magnetic field is dominated by its most energetically
costly �weakly divergent� interlayer part, Bin, which leads to
an interesting two-dimensional effective model where the
magnetic field Bin is not subject to the constraint that
� ·Bin=0,

Fef f�x,y� =
�

2
��� + ed�R̂Bin�x,y���2 +

d

2
Bin

2 �x,y� . �6�

Let us consider a vortex with a phase winding ��=2�n in
model �6�. The coefficient 	min for the ansatz �Eq. �5�� which
minimizes the spatially integrated free energy density �Eq.
�6�� for vortex with ��=2�n is 	min

��=2�n=−n���+ �e2d�−1�−1.
Thus, the vortex has the following configuration of the mag-
netic field:

Bin
��=2�n = − n

�

� + �e2d�−1

1

ed

r

r2 , �7�

where r= �x ,y ,0� �shown on Fig. 2�. Therefore, these defects
emit a quantized radial magnetic flux �= �B�r��2�rd. The
quantization condition is

���=2�n = −
2�

e

�

� + �e2d�−1n . �8�

Thus a “dipolar flux quantum” is

�d
0 =

2�

e

�e2d

�e2d + 1
� �0, �9�

where �0=2� /e is the standard magnetic flux quantum.
Note that this quantization has a different origin and charac-
ter than that in multicomponent superconductors.8 Observe
that in the limit of zero dipolar coupling or zero d, the mag-
netic flux tends to zero because the system reduces in that
limit to an electrically neutral condensate. Though, strictly
speaking, we cannot take the limit d→
 in this model, we
can observe that with increasing d, the dipolar flux quantum
saturates to the standard flux quantum. The same is achieved
in the limit of large �. Though such limits are not expected to
arise in DEC, it shows that the model captures important
physical circumstance that �d

0 has a bound and this is more
relevant for the system considered in the second part of the
paper.

The existence of a radial quantized magnetic flux, which
energy is much higher than that of the out-of-plane field,
means that in a way, these topological excitations play a role
of positive and negative “magnetic charges” in the effective
planar electrodynamics of model �6�. The logarithmically di-
vergent part of the energy of such a vortex placed in the
center of a circle-shaped system of a radius R is

FIG. 2. �Color online� A schematic picture of a magnetic field
configuration in DEC with vortices. Side view: the out-of-plane
magnetic field B carries the same flux as the interplane field Bin;
however, it has the freedom to minimize energy by spreading above
and below the top and bottom layers. Top view: the in-plane mag-
netic field Bin configuration for vortices with phase windings ��
= �2�. As explained in the text, for a large system, one can neglect
the energy of the out-of-plane field compared to the energy of the
field in the dipolar bilayer Bin.
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E �
��n2

1 + �e2d
ln

R

rcore
, �10�

where rcore is the vortex core size. Observe that in the limit
d→0, the logarithmically divergent part becomes the same
as that of a vortex of a neutral condensate with density �.
Again, even though, strictly speaking, one cannot take d
→
 limit in this model, nonetheless we see that in that limit,
the logarithmically divergent part of the vortex energy van-
ishes.

Even though the energy �Eq. �10�� is logarithmically di-
vergent, these vortices can, in principle, be induced in a DEC
by an external in-plane magnetic field because their magnetic
field also has divergent energy. This provides a possibility to
obtain a negative contribution to the Gibbs energy from
	rB ·H. For example, in principle, an experimentally realiz-
able configuration of induction elements can produce the fol-
lowing external in-plane field H�� r

r2 �r= �x ,y ,0� ;r�r0�,
where r0 is some cutoff length which is specific to the ge-
ometry of the induction elements. Then, for a vortex with
��=2�, the integral 	rB ·H provides a negative logarithmi-
cally divergent contribution to the Gibbs energy G=	r�E
−B ·H�. There is a critical value of the coefficient � at which
the creation of a vortex becomes energetically favorable �be-
low, we set r0�rcore�. In the regime �e2d�1, we obtain �c

� 1
2ed . In general case, the energetic favorability of a vortex

state depends on the integral 	rB ·H. An external field which
is significantly stronger than that corresponding to �c favors
a higher phase winding number of the induced vortex struc-
ture, however, on the other hand, the vortex energy depends
quadratically on n �see Eq. �10��. Therefore, a stronger field
should normally produce a state with multiple one-dipolar-
quantum vortices.

III. KOSTERLITZ-THOULESS TRANSITION

In a planar U�1�-symmetric system, thermal fluctuations
can excite finite-energy pairs of vortices with opposite wind-
ings. In model �6�, the interaction between a vortex with
��=2� located at r1 and an antivortex with ��=−2� lo-
cated at r2 originates from two sources. The usual current-
current interaction produces the attractive force,

FJ = − 2��
1 −
�e2d

�e2d + 1
�2 �r2 − r1�

�r2 − r1�2
, �11�

the other contribution comes from the Bin
2 term,

FB = − 2��
�e2d

��e2d + 1�2

�r2 − r1�
�r2 − r1�2

. �12�

A system of these vortices and antivortices can be mapped
onto a Coulomb gas which at a temperature TKT undergoes a
Kosterlitz-Thouless �KT� transition,

TKT =
�

2
��TKT�

1

1 + ��TKT�e2d
. �13�

Therefore, the temperature of the condensation transition in
DEC will be suppressed compared to the value of the con-

densation temperature in a neutral system with similar den-
sity. While the suppression for realistic DECs is tiny, there is
an interesting aspect in it because in contrast to the super-
fluid density jump � /TKT=2 /� in regular superfluids, here
one should define a “generalized superfluid density jump”
which depends on a nonuniversal parameter: the layer sepa-
ration. In the limit �e2d→
, this temperature tends to zero
reflecting the fact that in that limit, vortices do not have
logarithmic interactions and thus there is no true KT transi-
tion.

As is well known, one of the ways to detect a KT transi-
tion and/or crossover in superconducting films is associated
with a peculiar reaction to an applied current.9 In a supercon-
ducting film, an external current results in the Lorentz forces
acting on a vortex and antivortex in opposite ways, causing a
pairbreaking effect. Free vortices create dissipation which is
manifested in IV characteristics.9 In DEC, vortices have
magnetic field which can be viewed as that of magnetic
charges and, correspondingly, they are sensitive to an applied
external uniform in-plane magnetic field. Such a field, at
finite temperature, should create a KT-specific modification
of the zero-temperature response discussed in Ref. 4.

We note that because of small carrier density and layer
separation in the presently available semiconductor bilayers,7

a dipolar vortex would carry only about 10−7 flux quanta,
which, though may be resolved with a modern superconduct-
ing quantum interference device, makes observation of these
effects difficult. This raises the question if there could be
strong-coupling dipolar superfluids in principle. Below, we
show that the concept to dipolar superfluidity arises in a
system principally different from DEC, without interlayer
pairing problem �which limits dipolar coupling strength in
DEC�. This provides a possibility to have larger flux of a
dipolar vortex and more pronounced phenomena associated
with it. Moreover, there the concept of dipolar superfluidity
allows generalization.

IV. DIPOLAR SUPERFLUIDITY IN LAYERED
SUPERCONDUCTORS

Consider a layered superconductor �LSC�, i.e., a multiple
superconducting layers separated by insulating layers �to ef-
fectively eliminate interlayer Josephson coupling�, so that
the layers are only coupled by the gauge field. This system
has been extensively studied in the past.10 In the hydrody-
namic limit, its free energy density is

F = �
i=1

N
1

2
��zi����− ieA�x,y,zi���i�x,y,zi��2

+
�� � A�x,y,z��2

2
, �14�

where �i�x ,y ,zi�= ��i�x ,y ,zi��ei�i�x,y,zi�, zi+di=zi+1. This
model indeed does not feature dipolar superfluidity of the
DEC type. Here, the main distinction is the reaction to the
external field which is screened because of the Meissner ef-
fect �the effective screening length in a planar supercon-
ductor is �2/�layer thickness��. However, there are situations
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where the superconductivity can be eliminated in this system
by topological defects. That is, if to apply an external field
along the z direction, one can produce a lattice of vortex
lines with phase winding in each layer ���1�z1�
=2� , . . . ,��N�zN�=2��.10 Enclosed magnetic flux gives such
a vortex line a finite tension. At elevated temperatures, the
lattice of these vortices melts but importantly normally there
is a range of parameters �which depends on the strength of
the applied field and temperature� where the vortex lines
forming a liquid retain the tension.10–12 If the vortex lattice is
not pinned or if one has a tensionfull vortex liquid, the
charge transfer in superconducting layers is dissipative.
However, in such situations, a system nonetheless retains
broken symmetries associated with the phase differences be-
tween the order parameters and, correspondingly, dissipa-
tionless countercurrents;13 in this particular case, a broken
symmetry is retained in the phase difference between the
layers.13 Physically, the situation which occurs is as follows:
consider the N=2, ��1�= ��2�= ��� case. Currents in individual
layers move unpinned vortices which produce dissipation.
However, as long as a vortex line threading the system has a
finite tension, equal countercurrents in different layers de-
form but not move a vortex line and therefore do not create
dissipation. For small layer separation d, the dissipationless
counterflows can approximately be described by extracting
phase difference terms.13 Then, the part of model �14� which
retains a broken symmetry is

Fd �
1

4
���2
���1�x,y,z1� − �2�x,y,z2��

− e�A�x,y,z1� − A�x,y,z2���2 +
d

2
Bin

2 . �15�

The vortices in this system are related to dipolar vortices in
DEC. The simplest vortices with a topological charge in the
phase difference are ���1= �2�, ��2=0� and ���1=0,
��2= �2��. We denote them by a pair of integers ��1,0�
and �0, �1�. For a vortex ��1,0�, the currents in two layers
are j1=e���2��1−e2���2A�x ,y ,z1� and j2=−e2���2A�x ,y ,z2�.
Like in a DEC, in the case of a finite d, the vortex features

in-plane radial magnetic field �R̂Bin���zA�r�. These vortices
can be induced by an external in-plane magnetic field, like in
a DEC. However, there are indeed also principal differences.
LSC is a system with more degrees of freedom and the above
considerations apply only to the state when superconductiv-
ity in individual layers is removed, e.g., by a molten lattice
of �1,1� vortices, or thermally excited ��1, �1� vortices. We
stress that in this system, there is no interlayer pairing, but
counterflow is the only surviving type of dissipationless
charge transfer. Note also that the molten lattice of �1,1�
vortices does not automatically preclude a formation of an
ordered state of ��1,0� and �0, �1� vortices because a vor-
tex �1,1� does not have a topological charge in the phase
difference sector ���1−�2�, and their disordered states can-
not eliminate corresponding phase stiffness. The density of
�1,1� vortices and correspondingly the temperature of their
lattice melting are controlled by the strength of the magnetic
field in the z direction, while the density of ��1,0� and

�0, �1� vortices is controlled by the in-plane magnetic field.
The system therefore possesses a control parameter which
allows for the ordered structures of ��1,0� and �0, �1� vor-
tices to coexist with a liquid of �1,1� vortices.

The dipolar superfluidity in LSC should have a number of
detectable physical consequences. Namely, the LSC in the
vortex liquid state should have a dipolar superfluid response,
analogous to that discussed in great detail in Ref. 4. Also, the
system in the vortex liquid state should possess aspects of
planar electrodynamics with effective magnetic charges dis-
cussed above in connection with DEC which may be observ-
able in the temperature dependency of the dipolar response.
In the both cases of DEC and LSC, the dipolar superfluidity
will be destroyed by interlayer tunneling, which amounts to
explicit symmetry breakdown, but for very small interlayer
tunneling, some of its signatures will, in some cases,
remain.3

V. MULTIFLAVOR DIPOLAR SUPERFLUIDITY

The general case of N layers, especially with the variable
interlayer distances and the condensate densities, has much
richer structure than DEC because the dipolar superfluid
modes are multiple and coupled. That is, for N layers, one
can have multiple combinations of counterflows in different
layers which will not move a tensionfull vortex line. For
example, consider unpinned vortex lattice or tensionfull vor-
tex liquid in N=3 case. Then, there are combinations of cur-
rent in one of the layers accompanied by �weaker� counter-
currents in the other two layers which may deform but will
not move a tensionfull vortex line. Therefore, for N�2, di-
polar modes can no longer be associated with counterflows
in just two layers, but one has to consider all possible com-
binations of phase differences �i.e., all possible realizations
of counterflows in different layers� to describe dipolar
modes. In the limit of very small d, the kinetic terms for
countercurrents approximately can be expressed as

Fd
CF � �

i,j=1

N ���2

4N

���i�x,y,zi� − � j�x,y,zj��

− e�A�x,y,zi� − A�x,y,zj���2. �16�

Observe that the dipolar modes are multiple and not indepen-
dent, which is very different from N=2 case and cannot be
directly mapped on DEC. Rather, it generalizes the dipolar
superfluidity concept to the “multiflavor” case.

VI. CONCLUSION

We have considered the possible physical effects dictated
by the symmetry and dynamics of a gauge field in dipolar
condensates. For DEC, we started by constructing an effec-
tive model, based on symmetry and energy scales of the
problem. In this framework, we described topological defects
which emit a nonuniversally quantized radial magnetic flux.
We pointed out that because of the existence of well sepa-
rated energy scales in the regime, when interlayer distance is
smaller than other length scales in the problem, the system
possesses effective planar electrodynamics with magnetic
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charges �planar analog of magnetic monopoles� arising from
topological excitations. Therefore, at finite temperature, an
applied in-plane magnetic field should have a vortex-
antivortex pairbreaking effect. Experimentally, it may mani-
fest itself through a counterpart of the Halperin-Nelson re-
sponse which may be observable in systems with sufficiently
strong dipolar coupling. In the second part of the paper, we
map DEC onto the tensionful vortex liquid state in layered
superconductors. In that system, we point out the emergence
of a dipolar superfluidity which has a different origin be-
cause there is no interlayer pairing and carriers in layers have
the same sign of electric charge. There the analog of the
dipolar superfluidity arises as a consequence of the fact that
an unpinned or molten lattice of composite vortices �or ther-
mally excited unpaired composite vortices� makes currents in
individual layers dissipative while the countercurrents in dif-
ferent layers remain dissipationless. In these systems, there is
no need for interlayer pairing and carrier density is higher, so

the effective dipolar coupling may be relatively large. Be-
sides that, the dipolar response can be used as an experimen-
tal tool to study vortex liquids in LSC, e.g., to unequivocally
distinguish a tensionfull vortex liquid state from tensionless
vortex tangle. Finally, we have shown that a vortex liquid
state in a N-layer superconductor represents a generalization
of the dipolar superfluidity concept to the multiflavor case
where there are multiple and topologically coupled dipolar
modes.
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